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The existence of multiple time scales in molecular dynamics poses interesting and
challenging questions from an analytical as well as a numerical point of view. In this
paper, we consider simplified models with two essential time scales and describe how
these two time scales interact. The discussion focuses on classical molecular dynam-
ics (CMD) with fast bond stretching and bending modes and the so-called quantum—
classical molecular dynamics (QCMD) model where the quantum part provides the
highly oscillatory solution components. The analytic results on the averaging over
fast degrees of motion will also shed new light on the appropriate implementation of
multiple-time-stepping algorithms for CMD and QCMDyg) 1999 Academic Press

1. INTRODUCTION

Classical molecular dynamics (CMD) [1] leads to Newtonian equations of motion v
fast bond stretching and bending modes and a relatively slow motion in the remai
degrees of freedom. For numerical integration, the Verlet method [43] is typically u
with a step size that resolves the fast bond stretching/bending modes. However, ofte
is interested in the computation of slowly varying quantities and/or time averages, a
method such as Verlet can quickly become inefficient for long-time simulations.

Various approaches have been suggested to improve the classical Verlet method. A
these are (i) methods based on the explicit elimination of the fast bond stretching/ber
modes and the subsequent integration of the corresponding constrained equations of |
by the SHAKE or RATTLE method [2, 37] and (ii) reversible multiple-time-stepping (MT:
methods [7, 23, 42] that use different time steps for the fast and slow degrees of free

In appropriate (local) coordinates, the fast bond stretching and bending modes c
reduced to weakly coupled harmonic oscillators whose frequency depends on the
modes. This dependence leads to a coupling of the slow and fast modes, which, in ge
implies that the fast degrees of motion cannot be removed from the model without char
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its long-time dynamics [11, 14, 32, 36, 41]. It seems that in those situations only meth
based onthe idea of MTS can and should be used for enhanced classical molecular dyna
However, one must be careful: straightforward application of a MTS method may lead
wrong results or to unstable computations [7, 9]. This fact is briefly discussed in Sectiol
An improved approach to multiple time stepping has been suggested bya@aotiilla
etal.in[19]. In Section 5, we consider a variant of this approach [26, 34] that is particulal
suited for the multiple time scale integration of CMD.

Inrecentyears, the combination of quantum and classical molecular dynamics has bec
important. In this paper, we focus on the so-called quantum—classical molecular dynar
(QCMD) model [6, 12, 13, 20, 21], where most of the molecular system is described
classical Newtonian equations of motion while a small but important part is modeled
a time-varying Schodinger equation (see Section 3). Again, the fast quantum degrees
freedom and the slow classical degrees of freedom are tightly coupled. In fact, the ef
of this coupling on the (slow) classical degrees of freedom, which is linked to the Bor
Oppenheimer approximation [13], is easier to understand than the corresponding couy
effects in classical molecular dynamics. However, as we will show in Section 4, classi
molecular dynamics can be transformed to a system resembling the QCMD model,
theoretical results derived for the QCMD model can also be applied to classical molect
dynamics. This is confirmed by the numerical simulation of a simple test problem.

Because of the importance of the QCMD model, we also discuss MTS methods
QCMD [30, 31, 39]. Here it is crucial to observe that the method has to be implemen
in an appropriate way and that some of the straightforward implementations can lea
erroneous numerical results in the (slow) classical degrees of freedom [24, 30, 31]. T
aspect is discussed in Section 6.

2. CLASSICAL MOLECULAR DYNAMICS AND MULTIPLE TIME STEPPING

The atomic motion of a molecular system, consistingadtoms, is typically described
by Newtonian equations of motion of the form

q=M"p, 1)

p=-VV@— > Gi@) kig@. )

i=1

whereq € R3N is the vector of all atomic positiong,e R3N the vector of the corresponding
momentaM e R3N*3N the diagonal mass matrix, aiiq) the potential energy except for
the terms corresponding to bond stretching and bending which are described by the se
term on the left-hand side of Eq. (2). Here the functi¢gsi—1...m can either stand for
g (q) =r — rp (bond stretching) og; (q) = ¢ — ¢o (bond angle bending). In either case,
Gi(q) € R®N denotes the Jacobian gf(q) andk;; the force constant. For compactness
of notation, we collect the function;} in the vector-valued functiog, the force con-
stants{k;; } in the diagonal matri¥X ¢ R™™, and the Jacobian&s;(q)} in the matrix
G(g) e R™3N, This gives rise to the equations

qg=M"p, (3)
p=—VV(@ — G(@) Kg(q). 4
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The total energy

_ 1oy LT
H= Zp M D+V(Q)+29(Q) Kg(a)

is a conserved quantity (first integral) along solutions of (3)—(4).
Let us denote the potential energy of the systenlog), i.e.,

1
U(a) := V(@) + ég(qug ),

and the kinetic energy by (p). Then the Verlet method [43] can be considered as a col
position method [40] based on the exact solution operators of the two systems

4=V,T(p=M"1p,
p=0

and

q=0,
p=-V4aU().

Let us denote these solution operators by(ekp) and exgtL ), respectively. Then one
step of the Verlet method with a step siteis equivalent to the concatenation

exp(%tLU> - exp(étly) - exp(%tLU)

Because each solution operator is volume preserving (and even symplectic), the \
method is volume preserving (symplectic) [40]. Furthermore, the method conserves li
and angular momentum and the time reversibility of the Newtonian equations of motic
The Verlet method becomes inefficient if the evaluation of the force field is expen:s
due to long-range interactions. To enhance the classical Verlet method, a symplectic
time-reversible MTS method was suggested in [7, 23, 42]. The idea of this MTS met
is amazingly simple: We split the total potential enelgjynto two termsU; andU; with
U; containing all the short-range interactions (in particular the bond stretching/benc
modes). Then one step of a MTS scheme with macro stepdize|jst, j > 1, read$

At ot ot At
exp<2LU2>- exp(ZLU1>-exp(8tLT)-exp<2LU1) ~exp(2LU2). (5)

j times

This method has the same conservation properties as the Verlet method, but it is poter
more efficient since the long-range forces have to computed less frequently.

Although the idea of (5) is simple, the method has some drawbacks. For certain valu
the macro step sizat, the method can become unstable (meaning a systematic increa:

1 See Fig. 3 in Section 5 for a more explicit formulation of (5).
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total energy) due to resonance/sampling phenomena [7, 9]. Even if there is no systen
increase in the total energy, the numerical results can be qualitatively different from th
obtained from the standard Verlet method. This effect does not occur for systems v
strong bond bending/stretching potentials. But it can be observed for systems with \
light particles if the splitting of the Hamiltonian is not done properly. We will also encounte
this problem when discussing MTS methods for the QCMD model.

ExAMPLE 1. We take two harmonic oscillatoriy = (px)?/2+ (dx)?/2 and Hy =
(py)?/(2¢?) + (qy)?/2, one of which has a very small “massi'= €2, ¢ — 0, coupled by a
quadratic potentialV = gxQy:

1 €2 1 1
H= é(px)z + 7(py)2 + E(QX)z + E(Qy)z + OxQy-

The equations of motion are

Ox = Px.

Px = —0Ox — Qy,
Gy =€ *py,

Py = —0y — Ox-

The lasttwo equations describe a highly oscillatory motion about the “equilibritiy, 0).
If this solution is used in the second equation to time-average over the rapidly oscillat
force term

Ft) = —ax —ay(t),

we obtain the averaged for¢€ ) ~ 0. Thus, the “slow” dynamics in the variablax, px)
is approximately given by the equations

Gx = Px.
px == O.

A MTS scheme can be obtained via the splitting

1 €2
T= E(pX)z + T(py)z,

1
U = E(Qy) ,

and

1 2
U = E(QX) =+ Qx0y-
We assume that the step si¢te< ¢ in (5) is chosen small enough such that the equation
of motion corresponding to the Hamiltonian+ U; are solved “exactly.” Next we de-
fine the macro step siz&t such that the solutions t® + U, satisfyqy(At) ~ gy(0) and



MULTIPLE TIME SCALES 53

py(At) ~ py(0), i.e., At ~Ke/(2r), k> 1. Thus, instead of sampling a highly oscillatory
solution, we obtain a fictitious “constant” solution which, when plugged into the numeri
approximation of

Px = —0Ox — Qy(t) = F(1),

leads, in general, to a qualitatively wrong approximation of the averaged {Brcelhis
problem does not occur if the splitting

1
U1 = 5@y + odly

and

U = Lo
Z—E(qx)

is used.

Analternative tothe MTS scheme (5) istoreplace the Verlet discretizatibof+ U1 (q)
in the inner loop of (5) with one step with an implicit method (such as the implicit midpol
rule [40]) and step sizét = At. However, in addition to the resonance problems of th
MTS method (5) [28], one also, in general, encounters an exponential instability unles:
step sizeAt is chosen sufficiently small [4]. Thus such an approach seems inappropr
for CMD simulations.

3. QUANTUM—-CLASSICAL MOLECULAR DYNAMICS

3.1. The QCMD Model

Various extensions of classical mechanics to also include quantum effects have
introduced in the literature. Here we consider the so-called quantum—classical mole
dynamics model. In the QCMD model (see [6, 12, 13, 20, 21] and references therein), |
atoms are described by classical mechanics, but an important small portion of the sy
is described by quantum mechanics. This leads to a coupled system of Newtoniar
Schiodinger equations.

For ease of presentation, we consider the case of just one quantum degree of freedor
spatial coordinatex and massn and N classical particles with coordinatess R*N and
diagonal mass matrid € R3N*3N, Upon denoting the interaction potential gyx, q), we
obtain the following equations of motion for the QCMD model,

. i
=——H

14 5 @y,

g=M"p,

p=—(, VqH@y) — VU (),
with U (q) the purely classical potential energy addq) the quantum Hamiltonian operator
typically given by

h2

X
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In what follows, we assume that the quantum subsystem has been truncated to a fi

dimensional system by an appropriate spatial discretization and a corresponding repre

tation of the wave functiog by a complex-valued vectap € CY. The discretized quantum

operatorsT, V, andH are denoted e C9*9, V(q) € C9*9, andH(q) € C9*9, respectively.
The total energy of the system

p'™™M~'p

H= >

+ (¢, H@y) + U@ (6)
is a conserved quantity of the QCMD model. Here

(, HOQ)) == H(Q)y

andw_denotes the complex conjugatewf Another conserved quantity is the norm of the
vectori, i.e., (1), b)) = const due to the unitary propagation of the quantum part.

In the context of this paper, an important conservation property of the QCMD moc
is related to its Hamiltonian structure, which implies the symplecticness of the soluti
operator [3]. There are different ways to consider the QCMD model as a Hamiltoni
system with Hamiltonian (6). Here we basic&lfgllow the presentation given in [12, 38]:
We decompose the complex-valued veatointo its real and imaginary part, i.e.,

1

P ﬁ(Qw + 1Py). (7)
Then, the equations of motion can be derived from the scaled Lie—Poisson bracket
{F, G} = i"Y{F, Glqy.p, + (F. Glap; ®)
ie.,
f={f, H)

describes the time evolution of a functioih under the Hamiltoniar#{. The brackets
{F. Gl}q,.p, and{F, G}qp in (8) stand for the canonical bracket of classical mechanic
[3]. For example{F, G}qp =[V4F]"VpG — [V,F]TV,4G.

3.2. The Limit Behavior of the QCMD Model

It is of interest to consider the linditi — O for a fixed energy function (6). As explic-
itly shown by Bornemann and Sgté in [13, 15] using homogenization techniques, the
QCMD model reduces to the Born—Oppenheimer approximation if the symmetric mat
H(g) can be smoothly diagonalized and its (real) eigenvallig&q(t))}i—1,. 4 are pair-
wise different. This implies that the populatiof&(t)|?,i =1, ..., k, corresponding to
the eigenvalueg; (q(t)) of the operatoH (q) become adiabatic invariants. Without going
through a detailed analysis, this can be seen from the following averaging argument.

2\We use a different scaling in (7), which leads to the scaled canonical structure (8) of phase space.
3 One should really consider the limit — oo, i.e., should increase the mass of the classical particles. But thi
is equivalent, after an appropriate rescaling of time, to taking the limit0.



MULTIPLE TIME SCALES 55

us assume that there is a matrix-valued func@gn) € R¢*9 such that (i)Q(q) T Q(q) =!I
and (i) E(q) := Q(q)H(9)Q(q)" is diagonal. For simplicity, we consider only one classice
degree of freedom, i.e(q, p) = (9, p) € R?. Next we introduce the new vector

0 = Q)¢ € C°

and obtain the transformed QCMD equations of motion

6 = —E@0 + M LpA@)S. ©)
g=M7"p, (10)
p=—(6.Q)VeH@Q(®)'8) — V4U (q) (11)

with the skew-symmetric matriA(q) := V4Q(q)Q(q)". Note thatM~1pA(q) = Q(q)
Q(q)T. The fast motion is given by the diagnonalized time-dependent8ofgér equation

0-_ 1

= —ﬁE(q)O (12)

and the Hellmann—Feynman forgg [12], acting on the classical particles, can be writte
as

Frr = —(6, Q@) VqH(@Q(@)'8) = —(6, V4E(@)0) + (0, [A@E(@)]6),  (13)

with the matrix commutator
[A@), E()] = A@E(Q) — E()A(@).
We call
Feo = — (0, VqE(Q)8) (14)

the Born—Oppenheimer part of the Hellmann—Feynman force (13).

If all (real) elements of the diagonal matfXq) are different, then the quantum adiabatic
theorem [10, 17] implies that the transformed “wave” ve@dr) follows the solutions of
the reduced system (12) and the motion in the classical degrees of freedom is obtain
time-averaging the Hellmann—Feynman force (13) over the highly oscillatory softitio
O(t) of (12). For this, it is crucial to observe that the matrix commuta#qq)E(q)] has
zero diagonal entries and, thus, the time averag@©§, [A(qQ)E(q)]0(1)) is approximately
zero. Thus we obtain the averaged system

: i
0= —ﬁE(OI)G,

q=M"1p,

p=—(0, VqE@)8) — VqU ().

4The average is taken over a period of tieuch that (i) (t) ~ const. and (ii) the Scldinger equation (12)
undergoes many oscillations. For examfley v/ asfi — 0.
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SinceE(q) is diagonal, the entrigh(t) € C,i =1, .. ., d, of the vectoB (t) satisfy|6; (1)|> =
const. and
g=M"p,
p=—Y_161*V4Ei (@) — VaU(Q).
i

These equations are known as the Born—Oppenheimer approximation for the classica
ordinate [16].

If eigenvalues of the matrik(q) cross, thené; (t)|? # const, in general, and the Born—
Oppenheimer approximation breaks down. In this case, the full QCMD model has to
solved. Note that the crossing of eigenvalues cannot be avoided in general.

EXAMPLE 2. Let us consider a simple toy problem with two fast modes and one slc
mode,

qcogq+ (1—q)sifg (1 — 2q)singcosq
H@ = . ) .
(1 - 2qg) sinq cosq gsirfq+ (1—q)cogq

_ [ cosq sinq] [q 0 }{cosq —sinq}
- —sing cosq] [0 1—-4q] [sing cosq

and
1 1
H= 5'“2 + qu + (3, H(@)),

g, peR, ¥ € C2 Note that

cosq -sin
Q(q>=[ °sd q],
sinq cosq
q 0
E(q) =
(@ [0 1_q}
and
i o
A=
1 0

Thus the transformed equations of motion are

6= —%E(q)e + pA®,
a=np

with
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and
20— l]
C =IAE = .
@ = [A, E@)] {Zq 1 0
The Hellmann—-Feynman force (13) is given by
Frr = — (0. BO) + (6. C(q)6). (19)

Unlessqg ~ 0.5 (resonance point), the equations can be averaged and we obtain the B
Oppenheimer system

. i

0=——E()®0
5 (@0,

q=M"p,

Numerical results are presented in Section 6.

4. MULTIPLE TIME SCALES IN CLASSICAL MOLECULAR DYNAMICS

4.1. A CMD Model

We now come back to the CMD model of Section 2. In particular, we consider a con:
vative system with Hamiltonian

1 K
Hy = épTM p+ V(@) + Eg(q)Tg(q), (16)

whereV: R" — R andg: R" — R™, m < n, are nonnegative functions] € R™" is a di-
agonal mass matrix, arid > 1 is a parameteéYWe are interested in the limiK — oo and
solutions with energy{k < c for all K sufficiently large;c > 0 some given constant. This
implies that each componegt(q),i = 1, ..., m, of the vector-valued functiog satisfies

2c
gi (@ < \/;

and, fork — oo, suggests replacing the equations of motion
g=M"p,
p=-VaV@ — KG@) g(@),

G(g) € R™" the Jacobian afi(q), with the constrained system

q=M""p, (17)
p=-VqV@ —G@TA, (18)
0=9(@. (19)

We assume throughout the paper thatrthe m matrix G(q)M ~1G(q)" is invertible.

5 This Hamiltonian corresponds to the general system considered in Section 2 except that all force con
{ki } are assumed to be equalKoand the number of degrees of freedom satisfies3N.
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The constrained system can be integrated numerically using the SHAKE and RATT
methods [2, 37], which are basically equivalent [27] and lead to a modified Verlet meth
of type

On+1 =0n + AtM_lan/z,

At
Prs12 = Pn = - VoV (an) — AtG(0n) " An,

At
Pn+1 = Pn+1/2 — 7VqV(Qn+1),
0= g(Qn+1)-

Although this approach is very appealing, the constrained system does not, in gen
reflect the correct limit behavior of the unconstrained systerKfst 1. There are basically
two problems:

e Evenin the limitKk — oo, solutions of (16) do not, in general, reduce to solution:
of the constrained system (17)—(19). This is due to a coupling of the fast oscillations to
slowly varying solution components. This coupling gives rise to an additional (correctir
force termin (17)—(19). See [11, 14, 32, 36, 41] and Section 4.3 below.

e The approximatiom; (q) = 0 is often too crude unless the force constéris very
large. In fact, the function valuegp rapidly oscillate about the minimum of the total energy
(16). This leads to a modified constrained function in (19). The numerical implementat
of these “soft constraints” has been discussed in [33, 44]. An equivalent (but somew
easier to implement) approach is to modify the force field [35].

A brief account of the relevant analysis leading to the correcting potential is given
the following section. The approach is new in the sense that we show the relation of
unconstrained formulation to the QCMD model. This allows us to restrict the analysis of 1
limiting behavior to the limiting behavior of a QCMD-like model (as discussed in Section 2

4.2. Reduction of the CMD Model to a QCMD-like Model

The underlying QCMD model is found by a sequence of canonical transformations [3]
phase space. We start with the canonical point transformation introduced by the coordi
transformation

g == 9(qQ),
0z := b(q),

where b: R" — R"™™ is an appropriate function such thB(q)M ~'G(q)" =0. Here
B(q) e R""™*" denotes the Jacobian of the functio). The corresponding conjugate
momenta are defined via the relation

p=G(q) ' p1+B(@ p2.

Using this transformation, the Hamiltonian (16) becomes

1 1 K
Hy = épIGm)M*lG(q)Tpl + EpZB(mM*B(q)sz +V(@) + quql,

1. 1 K .
P A(d1, 92)p1 + P2 C(qy, g2)p2 + W(q1, 02) + 5%
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with A(q1, 02) =G@M IG(Q)T, C(q1, 02) =B(@M !B(a)T, and W(az, g2) = V(0).
Since the components) ; }i—1....m Of the vector; satisfy

,,,,,

2c

Oui < K’

we can scalg; by K2 and defindj; := K'/2q;. This yields the Hamiltonian

—1/2

(20)

He = %pIA(eql, G2)P1 + %pEC(eqL G2)P2 + W(etis, d2) + %alal with e := K

The equations of motion are generated via the scaled Lie—Poisson bracket
{F, G} = ¢ Y{F, Glgo.p, + (F, Glap.ps-

Here{F, G}g, p, and{F, G}, p, denote again the canonical bracket of classical mechani

Note that the constrained dynamics is obtained by seffirg0 andp,; =0. Thus, in local
coordinates, the constrained system (17)—(19) is characterized by the Hamiltonian

1
He = EDEK (G2)P2 + W(d2) (21)
with K(g2) = C(0, g2) andW(gz2) = W(0, 0y).

Without giving a rigorous justification, we now set the (small) tedin the Hamiltonian
(20) equal to zero. This yields

1 1 1o,
Ho = 5PIA(0, G2)P1 + 5PI K (@2)P2 + W(G) + 01 . (22)

which is to be compared to the constrained Hamiltonian (21). Next we introduce the ma
valued functiorD(gz) € R™™ by

D(d2) = [A(0, g2)]¥*.

This gives rise to another canonical point transformation via the coordinate transforme

X = D(d2) " 'ds,
y=20Q2

and corresponding canonical momefjg, py) defined by

D(q) 0
) N T pr] = {pl}. (23)
—€[5,D@ ] 1] Lpy P2

Upon dropping the off-diagonal term of ordein (23), the Hamiltonian (22) becomes

1. 1. 1.
Ho = pr H(y)px + épy Ky)py + W(y) + EX Hy)X,
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with H(y) =D(y)? andK (y), W(y) as defined in (21). The corresponding Lie—Poissol
bracket is

{F,G} = e HF, Glxp, + {F,Glyp,

Next we considexr andpy as the real and imaginary part of the complex veztocC™, i.e.,

Z= \j-é(X'Flpx)

This yields
Ho=Z"H(y)z+ %pJ K(y)py + W(y),
and we write this as a QCMD-like system with total energy
Ho = (z, HY)Z) + Hc(y, Py).
the finite-dimensional “Sclodinger operatorH(y), the “wave function”z, the artificial

“Plank constant’e, and the classical (constrained) Hamiltonian (21). The equations
motion are

2= —THy)Z (24)
Y = +Vp,He(y, Py, (25)
Py = —VyHc(y, py) — Vy(z, H(Y)2). (26)

We are interested in the limit— 0, which we will discuss in Section 4.3. The constrainec
system approximation corresponds?ig = M., which neglects the “quantum” contribu-
tions. We note that :=(z, z) is a first integral of the system. The same quantity is no
necessarily conserved for the system with the complete Hamiltoniarf (20vever, nu-
merical experiments indicate thhis an adiabatic invariant fak, and is conserved over
relatively long integration intervals up to small fluctuations. See Example 3 below. A the
retical investigation of this behavior will be carried out in a forthcoming publication.

ExampLE 3. We consider a planar system consisting of six particles with coordinat
gi € R? and massn= 1. The particles interact with one another through a (stiff) harmoni
potential

K 5
2
Vstitt = > ;UHH -1,

rij =11gi — gjll, and a (soft) anharmonic potential

4 6 1
Vsoﬁzz Z r
J

j=0i=j+2 '

5 We haveH, =H, + O(e).
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15F A
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FIG. 1. Time evolution ofl (t) over a time interval [0, 120] for different values of the force constant

For simplicity, the first particle is fixed at zero. The force conskaig set tok = 2.5 x 10%,
1.0 x 10°,and 10 x 10°. We integrate the equations of motion using the Verlet method witt
sufficiently small step size aft = 0.1/+/K and compute the eigenvalues of the correspon.
ing matrixH (y) € R°*5, the entries of the vectare C°, andl = (z, z). In Fig. 1, we plotthe
time evolution ofl (t) over a time intervall = 120. It can be concluded that the norm of the
vectorzis relatively well conserved for our two-time-scales CMD model. Numerical resu
on the time evolution of the individual entries of the vea@an be found in Section 4.3.

In terms of the original variable&, p), the QCMD-like equations (24)—(26) can be
written as a constrained QCMD-like system

i

z=—--H(@Q)z
€

q=M"1p,

p=-VqV(Q) — Vq(z, H®2) — G@)T A,

0=9,

with H(q) = [G(q)M ~1G(q)T]V2.

4.3. The Limiting Behavior of the CMD Model

The results of the previous section indicate that one can reduce the discussion c
limiting behavior of the CMD model as= K ~%/2 — 0 to the investigation of the QCMD-
like equations (24)—(26).
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In case thaH(y) is a scalar, i.e.H(y) =h(y) € R, no resonances can occur and the
“Born—Oppenheimer” approximation is valid for gll The averaged equations are

y = +prHc(y’ py),
Py = =VyHe(y, py) — [2*Vyh(y),
|z]? = const

The need for the correcting force ter = [z|2Vh(y) was first pointed out by Rubin
and Ungar [36]. It was shown in [34] that the corresponding CMD equations satis
|z(t)| ~ const. over an exponentially long-time intervah €€, ¢ > 0 some constant, if
the energy function (16) is real analytic.

Under the assumption that the fast degree of motion is strongly coupled to a heat |
with temperaturd, the correcting force term is determined by the relatifh(y) =kgT
and leads to the Fixman potentd =kgT In h(y) [18, 32].

If a given matrix-valued (y) can be smoothly diagonalized, then we can still apply th
“Born—Oppenheimer” approximation provided the eigenvalues of the md{yx are all
different. This case was first investigated by Takens in [41]. For a recent discussion in te
of homogenization see [11]. If eigenvalues cross, then the “Born—Oppenheimer” appre
mation breaks down as for the QCMD model of Section 3. See the numerical example be

The correcting force term vanishesHf(y) =H = const. This situation occurs if the
constrained Hamiltonian (21) corresponds to a system of uncoupled rigid bodies, |
G(qQ)M~1G(q)"T =const., and has been analyzed by Benettial.in [5].

ExampLE 3 (Continued). InFig. 2, we present the eigenvalues of the ‘t&thger’ ma-
trix H(y) and the “occupation numberg (t)|?,i =1, ..., 5, corresponding to the “wave”
vector z(t). The force constant was set equalko= 2.5 x 10*. “Occupation numbers”
|z (t)]? jump when the corresponding eigenvalues undergo or are close to a 1:1 reson:
(except at ~22.2). It should be noted that higher-order resonances do not lead to trar
tions in the “occupation numbers.” This is contrary to what can be expected from the res
presented in [11, 41].

5. MULTIPLE TIME STEPPING FOR CLASSICAL MOLECULAR DYNAMICS

The analysis of Section 4 indicates that in most cases the fast oscillations cannot be e
nated (or ignored) in long-term MD simulations. In particular, non-adiabatic transitions a
the breakdown of the “Born—Oppenheimer” approximation are unavoidable. The best
out might be an efficient simulation of the full system which takes into account the existi
multiple time scales. Since the standard MTS method (5) suffers from resonance indt
instabilities [7], we will discuss a variant of the mollified MTS methods, as suggested
[19], that is particularly suited for the CMD model.

5.1. Projected Multiple Time Stepping
Let us come back to highly oscillatory Hamiltonian systems of type
g=M"p,
p=—-VqV(@) — GO Kg(®).
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FIG. 2. Time evolution of the eigenvalues &f(y) and the corresponding “occupation numbeizTt)|?,
i=1,...,5, forK =25x 10" and over the time interval [20, 30].

The Hamiltonian is

pT™M~1p g(a) "Kg(a)

H(q.p) = 5 T v + >

and we split the potential energy into a short range contributiop; and a long-range
contribution),. The standard MTS method [7, 23, 42] is now defined via the splitting

H=T()+ Vi) + Ua(q),

with U, =V, andU; = V1 + 1/29(q) "Kg(q). This leads to the MTS algorithm (5), which
is more explicitly written out in Fig. 3.

This formulation suffers from resonance-induced instabilities [7, 9], which are cause
an unfortunate sampling of the high-frequency oscillationg,ig= g(q). In [19], Garea-
Archilla et al. suggested combining averaging with multiple time stepping. Here we 1
information about the analytical solution behavior of the fast system to obtain the avere
force field.

The motion inq; := g(q) is highly oscillatory with a time average close to zero. T
eliminate the effect of the highly oscillatory varialjge on the long-range forces in (5), we
replace the long-range force fied () = —V4U2(q) by

Fa(q) = —VqUa(1h(q)),

which is the gradient of the modified potential eneWjyq) := U2(2(q)).
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Step 1.

_ At
Pn = Pn— 5 Vala(gn)

Step 2.
Integrate the fast/local system
d

— = -1

pr M~ p,

d

P = ~Vilila)

using Verlet with a step-size 6t = At/j, j > 1, and initial conditions
(@, P,). Denote the result by (g, 1,5n1)-

Step 3.

_ At
Pny1 = pn+1_—§'qu2(Qn+1)

FIG. 3. Standard multiple time stepping.

The functiom) is defined by the SHAKE-like nonlinear system of equations

d=1w@=q+M G p,
0=g9@)

in the variableu € R™. Note thaty projects they; = g(q) solution component to zero. To
implement our approach, we need the Jacollgay of 4. This requires the computation
of the second derivativBqqg; (q) of the functionsg;, i =1, ..., m, and the solution of a
linear system of equations, i.e.,

m
dg = dg+M71G@)" dp + M 1 8gqi (a) da,
i=1

0 = G(@) dg

with § =1 (q) anddq = 941 (0)dq, or, in other words,

Aqp(@ =[I —MIG@TAG@] || + M 1iByq8i (O)

i=1
with
Q=[G@OMG@"T

This leads us to the projected MTS scheme of Fig. 4 [26, 34].

This symplectic scheme avoids the resonance problems typically encountered in
standard MTS method and is useful whenever the evaluatiowW gf,(q) (long-range
forces) is much more expensive than the evaluatiow gf); (q).

The modified MTS method of GaArchilla et al,, as well as our projected multiple-
time-stepping method, has been tested for a box of water. Both methods allow one toincr
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Step 1.

i, = ¥(g,),
Fn. = _[aqw(Qn)]T V6U2(qn)
Step 2.

At
ﬁn = pn+7F’1

Step 3.

Integrate the fast system

d -1

—q = M

dtq b,

d

ap = _Vqu(Q)

using Verlet with a step-size 6t = At/j, j > 1, and initial conditions
(g,,P,)- Denote the result by (¢n.1,Ppy1)-

Step 4.
[jn+1 = 1/)(Qn+1)7
Fn+1 = _[aq¢(Qn+1)]T V§U2(qn+1)
Step 5.
- At
Pnt1 = Ppyrt 7Fn+1

FIG. 4. Projected multiple-time-stepping method.

the step size\t from 1-2 to 57 fs (1 fs= 10-1° s) without any additional evaluation of the
long-range forces [26]. In fact, the projection method turns out to be more robust thar
methods using averaging [26]. Note that the standard MTS method (5) becomes uns
at At ~ 4 fs. It can be expected that improved projected/averaged MTS methods will al
one to increase the macro step size uptox 10 fs [26].

5.2. A Modified Projection Step

The approximatiorg(q) =0 in the definition of the map) might not be suitable for
moderate values of the force constants, and a better approximation to the averaged \
of g1 = g(q) should be used. As pointed out in [33, 44], the variahlescillates about the
minimum of the total energy in the direction @f. This minimum is characterizédy the
nonlinear equation

0=G@EM 'VaU1(@,
which replaces the constraigtq) = 0. Thus we introduce the modified projection
0:=9¢(@

"Here we have neglected velocity-dependent contributions and contributions from the long-range pote
energyU,(q).
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by means of
d:=q+M'G@"n,
N 3 (27)
0 = G@M"VaU1(@).

The resulting nonlinear system in the variafle R™ can be solved by Newton's method
with the simplified (symmetric) Jacobian

J=[G(@MG(@ IK[G@M *G(@)].
As before, we introduce a modified (averaged) long-range potential energy function
W(@) :=U2(p(q)).
The evaluation of the gradient
VqW(@) = [99¢(@)]" VaU2(@)
requires the computation @f;¢(q), i.e.,
dg := 9q9(q) dq,

m
= dg+M7G(@"dn+M™> ndgqai(a)da,

i=1

anddn€ is determined by the equation
0= 85[G(@M ' V4U1(@)]da.
In terms of the individual functiong;, this results in
0= {[M'VgU1(@)] " Bgqg (@ + Gi (@M 'gqUs (@)} d,

which includes the computation of the Hessiargfq). Thus this approach should only
be used ifU; is restricted to nearest neighborhood interactions such as the bond stre
ing/bending potentials and the repulsive part of the Lennard—Jones interactions.

The modified projection can be built into the MTS scheme of Fig. 4 by replagingh
¢. We point out that this modified force field requires additional force field evaluation
However, these additional force field evaluations are restricted to nearest neighborh
interactions.

6. MULTIPLE TIME STEPPING FOR QUANTUM—CLASSICAL
MOLECULAR DYNAMICS

A natural extension [30] of the Verlet method to the QCMD equations of motion is give
by

At
Y12 = eXp<—iEH(Qn)> (e (28)
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On+1/2 =0n + %Milpn,
Leapfrogq pni1 = Pn — At{¥ni1/2, VqHOni1/2)¥ni12) — AtVqU (Ony1/2),  (29)

Unt1 = On+rz + 5 M Pnsa

At
Y1 = EXp<—iEH (Qn+1)> Yny1/2- (30)

Even if the matrix exponentials in (28) and (30) are evaluated exactly, the scheme req
a very small step size. Otherwise the Hellmann—Feynman forces acting on the clas
coordinates will be wrongly approximated [24, 30, 31] and the behavior of the populati
{16 (t)|?} may not be reproduced correctly (see Example 4 below). The same holds tru
MTS variants of the above method, as suggested in [38, 39], where the matrix expone
is replaced by an approximation usingteps of a smaller step side= At/j.

ExAMPLE 4. We demonstrate a potentially dangerous implication of using a large ti
step on the preservation of the populati¢y#s(t)|?} in an adiabatic regime. Let us considel
a simple two-dimensional system

§ = HOY. (31)

1 € C2, where the dependence Hf on the classical coordinatgis replaced by a time
dependence. In particular, we take

Het) = coft —si't —2cost sint
—2costsint  sift — coft

and introduce a new vectér,

0 = Qt)7,
with
Qt) = {cost —sint]-
sint  cost

This transformation gives rise to the equation

. i

0=——-EO+ A0,
7 +
with
£ {1 0}
0 -1
and
A= [0 _1}.
1 0

Providedh « 1, this system satisfies the quantum adiabatic theorem, which implies that
populationg{|6; (t)|?} are almost constant.
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An exponential integrator for the system (31) is given by
iAt iAt
Ynp1 = exp(— on Hn+1) exp<— on Hn> Py
iAt i At
= Q-nr+1 exD(—EE) Qn+1QI exp(— EE) Qnty,
or, in terms of@, as

i At i At
Oni1 = exp(—EE) Qn+1Qp eXp(— o E) On. (32)

Let us assume that the step sixeis (accidentally) chosen such that

exp(—lehtE) =1;

then (32) “simplifies” to
Oni1 = Qni1Q On,
which is a second-order-accurate discretization of the differential equation
0=A0=01Q1)"0.

But this is wrong. The populatiori®; (t)|?} are no longer conserved but undergo a system
atic drift instead.

We point out that this effect is due to an unfortunate choice of the step\$iand may
not be observed generally. Nevertheless, it raises concerns about using a large time
when integrating a slowly varying time-dependent Scdimger equation.

Provided that we can neglect the problem mentioned in Example 4, a larger macro ¢
size At may be applied in (28)—(30), if the Born—Oppenheimer approximation (14) to tl
Hellmann—Feynman force is used in (29). See [8] for details. However, the formula (-
requires the computation of the derivatives of the diagonalized quantum opExator
which is computational expensive, in general. This can be avoided if an explicit averag
alongqp(t) is applied to the Hellmann—Feynman force in (29). See [24] for detalils.

Here we suggest a different approach based on a splitting of the Hamiltonian (6) i
'H ="H1+ H in the following way [31]:

T M -1
Hi=2ZP and o= . H@Y) +U@.
Let us write the corresponding differential equations. First}{er
P =0,
g=M"p,

p=0;
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next, forHo,

; i

¥ =—7H@P. (33)
q=0, (34)
p=—(, VaH@v) — VU (). (35)

The solution tdH; is just a translation of classical particles with constant momentum

The intriguing point about the second set of equations istigbow kept constant. Thus
the vecton) evolves according to a time-independent Sclimger equation with constant
Hamiltonian operatoH(q), and the update of the classical momentpns obtained by
integrating the Hellmann—Feynman forces [12] acting on the classical particles along
computedip(t) (plus a constant update due to the purely classical force field).

Upon computing the eigenvalues of the operatdn), Egs. (33)—(35) can be solved
exactly. However, this is, in general, an expensive undertaking. Therefore we proceed
the following multiple-time-stepping approach: The first step is to consider the identity

exp(AtLy,) =exp(AtLy,) - exp(AtLy) = exp(stl;,) - exp(AtLy),
—_———

j times
wherest = At/j, j > 1, and

Ho = (3, H@)Y).

The second step is to use

A A
exp(AtLy) = exp(—t LH1>~ exp(atLﬁ ) -exp(AtLy) - exp(—t LH1>+(’)(At3). (36)
2 N 2

j times

The last step is to find a symplectic, second-order approximaiiprto expdtL ). In
principle, we can use any symplectic integrator suitable for time-dependeradbuiper
equations with a time-independent Hamilton oper&tay) (see, for example, [22]).
Provided thatv(q) is diagonal, an efficient methodls; is obtained by exploiting the
natural splitting of the quantum operatbf(q) =T +V(q) as used in the symplectic
PICKABACK scheme [29]. This yields two exactly solvable subsystems,

Hor= (, Tep)  and  Haz = (3, V(Q)Y).

The resulting integrator for QCMD, as presented in Fig. 5 and first suggested in [31], i
second order, explicit, and symplectic, and conserves the norm of the wave function
the implementation of other choices fg;, see [31].

The MTS scheme of Fig. 5 may still require a relatively small macro step/size®
ensure an accurate computation of the populat{gfist)|?}. Thus it might be useful to
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Step 1.
At
Qnt1/2 = qn+7M lpna
ﬁn = Pp— Atqu(Qn+1/2)
Step 2.

- i 0t
Yt/ = €Xp (_EfT) Vnt(k-1)/5 »
k=1...j Prsk/i = Prtth-1)5 — (st(1/;n+k/jvVQV(Qn+1/2)1[’n+k/j>)
_ i 8t i .
Yryrs; = €Xp 33 1) exp _EétV(Qrﬂ-l/Z) Yotk/s
Step 3.

Prny1 = ﬁn+17

At _
qn+1 = qn+1/2 + TM lpn+1 .

FIG. 5. Multiple time stepping for QCMD.

consider the following modification of the MTS scheme (36):

At ot ot At
exp<? LU> : exp(E LHl) -exp(8tLy;,) ~exp<ELH1> . exp<7LU>. (37)

j times

This MTS method resolves the quantum part of the QCMD equations of motion mc
accurately than (36) and is approximately as expensive as (36) if the evaluation of
operatorV(q) and its gradienV 4V (q) is not too expensive compared to one integratior
step with®;; ~ exp(stLy,).

ExampPLE 2 (Continued). Here we numerically integrate the model system frol
Example 2 in Section 3.2. We use the symplectic and unitary implicit midpoint rule [40] f
the numerical approximation of et L ;) and implement itin the MTS method (37). The
Plank constant is set of,=0.01, the macro step size ist =0.1, andst = 1.0 x 1073.

As initial conditions, we takg =1, p=0, andy = (1,0)". In Fig. 6, we plot the occu-
pation number$; (t)|?, i =1, 2 and the time evolution of the classical coordingt). It
can be seens that the Born—Oppenheimer approximation breaks doveg{nean.5. Next
we compare the “exact” solution obtained from the MTS method (37) witk- 0.05 and

5t =1.0x 10~* to the approximation obtained using the Verlet-based scheme (28)—(:
with a step sizeAt = 0.05. The results can be found in Fig. 7. The difference in the trajec
tories is due to a (wrong) pointwise evaluation of the Hellmann—Feynman forces at a me
time stepAt in (29).

In summary, one can say that the design of MTS schemes for the QCMD model will
quire further research on an “optimal” choice for the metfigdto approximate ex@tL ),
the splitting of the Hamiltonian (6), and the ratio of the step siz¢sandét. Provided
the eigendecomposition of the Hamilton operdtidn) is known, one could also directly
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FIG. 6. Time evolution of the “occupation numberg; (t)|2,i =1, 2, and of the classical coordinagt)
over a time interval [0, 20] using the symplectic MTS method (37).
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FIG. 7. Time evolution of the classical coordinajét) computed with (i) the MTS method (37) (solid line)
and (ii) the method (28)—(30) (dotted line).
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integrate the transformed QCMD equations (9)—(11). This approach will be discusse
more detail in a forthcoming publication.
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